文章编号:1006-544X(2003)01-0093-02

从废钒催化剂中回收钒的实验研究

肖 瑜

(桂林工学院资源与环境工程系,广西桂林 541004)

摘 要:采用硫酸浸取 – 氨水富集 – 硝酸氧化的方法,从废钒催化剂中回收钒.研究了硫酸浓度和硝酸浓度对产品产量的影响,在硫酸的浓度为 6% 和硝酸浓度为 31% 的最佳实验条件下,产品中 V_2O_5 的纯度达到了 78.6%, V_2O_5 的回收率达到 83.6%.实验采用硝酸代替 $KClO_3$ 等氧化剂,可以减少 V_2O_5 中杂质的含量,易于进行分离提纯,从而提高 V_2O_5 的纯度,提高反应速度,扩大生产能力.

关键词: 废钒催化剂; 五氧化二钒; 回收; 富集

中图分类号: X781.3

文献标识码: B①

硫酸工业每年产生大量的废钒催化剂,造成对环境的污染.同时,钒是稀有金属,在自然界中分散而不集中,富集的钒矿不多,提取和分离比较困难^[1].从废钒催化剂中回收 V_2O_5 既能避免对环境的污染,又能节约宝贵的资源.目前回收钒的主要方法有空气氧化法、氯酸钾氧化法等,本次实验采用硫酸浸取 – 氨水富集 – 硝酸氧化的方法回收废钒催化剂中的 V_2O_5 ,反应产物中只有 V_2O_5 为固体,其它均为气体或液体,因而易于分离提纯.

1 原料制备

实验采用邵阳市化肥厂废弃的 S101 型(V_2O_5 含量 7% ~8%) 钒催化剂为主要原料. 但由于钒催化剂在使用过程中, V_2O_5 与 As_2O_3 和 F 作用生成挥发性的 $V_2O_5 \cdot As_2O_3$ 和 VF₅而使五氧化二钒含量减少. 根据 GB 4698. $12-84^{[2]}$,用硫酸亚铁铵容量法测定此废弃的 S101 型钒催化剂中 V_2O_5 的含量为 4. 75%,用粉碎机把粗棒状废钒催化剂破碎成粉末.

2 钒的回收方法

2.1 硫酸浸取

称取 100 g 废钒催化剂粉末,用一定浓度的硫酸浸取,同时搅拌,温度在 90℃,反应时间 20~30 min,用不同浓度的硫酸 9 次重复实验,记录数据(表1,图1),选择最佳硫酸浓度(其它条件相同).

由图 1 可知,用硫酸浸取时,硫酸的适宜浓度为 6% 时,五氧化二钒的产量最大.

表 1 硫酸浓度对产量的影响

Table 1	Effect	of H ₂	SO ₄ co	oncent	ration	on V	O ₅ pi	oduct	ion
w(H ₂ SO ₄)	1	2	4	6	8	10	12	14	16
/%									
$m(V_2O_5)/g$	3.03	3.47	3.84	3.97	3.58	3.14	2.93	2.86	2.82

2.2 氨水富集

在酸浸液中加入适量 $Na_2 SO_3$,然后加入氨水,调节控制溶液的 pH 值为 $4.5 \sim 5.5$,废钒催化剂中的钒以灰色的 $V_2 O_2 (OH)_4$ 沉淀下来. 然后过滤,得滤渣.

2.3 硝酸氧化

在滤渣中加一定浓度的硝酸,加热至沸腾,溶液由灰色变成红色,出现大量的红色五氧化二钒沉淀,过滤烘干称量,记录数据(表2,图2),

作者简介: 肖 瑜 (1973-), 女, 湖南邵阳人, 硕士, 讲师, 环境工程专业.

① 收稿日期: 2002-10-14; 修订日期: 2002-11-15

选择最佳的硝酸浓度(其它条件相同).

由图 2 可知,硝酸氧化时,硝酸的浓度应不低于 17%;当硝酸的浓度大于 31%时,五氧化二钒的产量增加不大,综合考虑经济效益,硝酸氧化时的适宜的硝酸浓度为 31%.

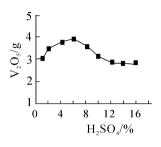


图 1 硫酸浓度对产量的影响

Fig. 1 Effect of H₂SO₄ concentration on V₂O₅ production

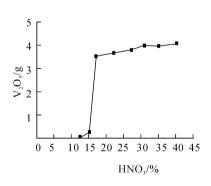


图 2 硝酸浓度对产量的影响

Fig. 2 Effect of HNO₃ concentration on V₂O₅ production

表 2 硝酸浓度对产量的影响

Table 2 Effect of HNO₃ concentration on V₂O₅ production

w(HNO ₃)/%	12	15	17	22	27	31	35	40
$m(V_2O_5)/g$	无	0.25	3.51	3.62	3.77	3.97	3.98	4.04

2.4 分析方法

根据文献[2],用硫酸亚铁铵容量法测定原料及产品中钒的含量.

3 实验结果

根据上述实验得出的最佳实验条件,用 6 %的硫酸浸取 100 g 废钒催化剂,然后加入适量的 Na_2SO_3 ,再加入氨水,调节溶液的 pH 值为 4.5 ~ 5.5,最后将生成的沉淀用 31%的硝酸氧化,加热至沸腾,出现大量红色沉淀,经过滤烘干称量,得红色 V_2O_5 沉淀 5.05 g,根据文献 [2],用硫酸亚铁铵容量法测定此沉淀中 V_2O_5 的含量为 3.97 g,即沉淀中 V_2O_5 的纯度为 78.6%,废钒催化剂中 V_2O_5 的回收率达到了 83.6%.

4 结 论

硫酸浸取钒时硫酸的适宜浓度为6%; 氨水富集时控制 pH 值为4.5~5.5; 硝酸氧化时, 硝酸的浓度应不低于17%, 适宜浓度为31%.

本次实验得到的产品纯度只达到了 78.6%,如需进一步提高产品纯度,可采用碱溶 - 氯化铵沉淀 - 加热分解的方法对产品加以提纯,但是会增大其生产成本.

参考文献:

- [1] 武汉大学, 吉林大学. 无机化学(下册)[M]. 北京: 高等教育出版社, 1994. 945 946.
- [2] GB 4698.12-84, 钛及钛合金化学分析方法. 硫酸亚铁铵 容量法测定钒量 [S].

Experimental research on recovery of vanadium from waste vanadium catalyst

XIAO Yu

(Department of Resources and Environmental Engineering, Guilin Institute of Technology, Guilin 541004, China)

Abstract: Vanadium is recycled from waste vanadium catalyst by sulfuric acid leaching – ammonia water enrichment – nitric acid oxidation. It is studied about the influence of product output for concentration of sulfuric acid and nitric acid. Purity of V_2O_5 of the product is 78.6% and percent recovery of V_2O_5 is 83.6% in the best experiment condition when concentration of sulfuric acid is 6% and nitric acid is 31%.

Key words: waste vanadium catalyst; V_2O_5 ; recovery; enrichment