文章编号:1006-544X(2003)04-0477-03

镍(Ⅱ)配合物[Ni(Phen)₂(H₂O)]・2ClO₄的合成及其晶体结构

张淑华1,马录芳2

(1. 桂林工学院 材料与化学工程系, 广西 桂林 541004; 2. 洛阳师范学院 化学系, 河南 洛阳 471022)

摘 要: 由过渡金属与邻菲咯啉(Phen)反应,合成了配合物[Ni(Phen)₂(H₂O)]·2ClO₄,并测定了它的红外光谱及晶体结构. 结果表明: 配合物属单斜晶系,空间群 C2/c,其晶胞参数为: $a=1.915\,9(4)\,\mathrm{nm}, b=0.822\,71(17)\,\mathrm{nm}, c=1.617\,0(4)\,\mathrm{nm}; \beta=100.477(15)^\circ, V=2.506\,3(9)\,\mathrm{nm}^3$,Z=8, $D_{\mathrm{cald}}=1.491\,\mathrm{g}\cdot\mathrm{cm}^{-3}$. 该配合物由络阳离子 $\mathrm{Cu}(\mathrm{Phen})_2(\mathrm{H}_2\mathrm{O})^{2+}$ 和 2 个高氯酸根堆积而成,分子间通过 $\pi-\pi$ 堆积作用而形成二维网结构.

关键词: 镍配合物; 邻菲咯啉; 晶体结构

中图分类号: 0614.121

文献标识码: A①

邻菲咯啉(Phen)是一种优良的配体,能和多种过渡金属离子形成稳定的配合物。在均相催化、萃取、生物无机和分析化学等方面有多种用途。但是,其配合物^[1]存在大量的反常现象(其水解、外消旋化和电子转移速率都与 pH 有关),为解释这些反常现象,Gillard 借用了有机氮化学的共价化合物的观点,提出了一个机理:含氮的杂环配体(如联吡啶或邻菲咯啉)与过渡金属离子产生的效应类似于季铵化。镍是生命必需的痕量元素,能促进体内铁的吸收、红细胞的增长和氨基酶的合成^[2],可能是 DNA 和 RNA 的一种结构稳定剂。笔者以 Ni(ClO₄)₂ 和邻菲咯啉为原料,首次合成了配合物[Ni(Phen)₂(H₂O)]·2ClO₄单晶,并测定出了其红外光谱及晶体结构。

1 实验部分

1.1 实验仪器与试剂

Perkin – Elmer 240 元素分析仪, Shimadzu IR – 408 型红外光谱仪, X – 射线晶体结构采用 Siemens P4 衍射仪. 牛磺酸 (生化试剂), 高氯酸镍自制, 邻菲咯啉 (C. P.).

1.2 配合物的合成

取 1 mmol 氧化镍,溶于高氯酸,蒸干,加乙

醇 (φ = 0.95) 溶解,滴加 2 mmol 邻菲咯啉的乙醇溶液,在水浴 55℃下,搅拌反应 2 h,然后加入 1: 1 的氢氧化钾和牛磺酸 4 mmol 水溶液,继续反应 8 h,冷却过滤,滤液置烧杯 12 h 后得到配合物的单晶.金属离子用 EDTA 滴定,元素分析实验值(%): C 45.38; H 2.81; N 8.83; Ni 9.11.按 C_{12} H_9 $Ni_{0.5}$ N_2 $O_{4.50}$ Cl 所得计算值(%): C 45.32; H 2.85; N 8.81; Ni 9.23.

1.3 晶体结构的测定

用于测定结构的配合物晶体尺寸大小为 0.54 mm $\times 0.52$ mm $\times 0.20$ mm, 在 Siemens P4 衍射仪上,以石墨单色化的 MoK_{α} 射线($\lambda=0.071.073$ nm),在 2.16° < θ < 25.49° 范围内,以 ω - 2σ 扫描方式于 289(2) K 下共收集到 2.675 个衍射数据用于求解结构,而 $I > 2\sigma$ (I) 的独立衍射点 2.331 个,其中 $F_0 \ge 4\sigma$ (F_0) 可观测点 1.668 个,25 个反射定晶胞(2.90° < θ < 15.08°),全部数据经经验吸收校正,所有计算均在 IBM 486/PC 机上用Siemens shelxl 97 程序包进行。晶体结构由直接法解出,对非原子坐标和各向异性温度因子进行了全矩阵最小二乘法精修,配合物由理论加氢,氢原子差值经 Fourier 合成得到。最终偏差因子(对 I > $2\sigma(I)$ 的衍射点) $R_1=0.043$ 3, ω R₂ = 0.112

作者简介: 张淑华(1970-), 男, 湖南邵阳人, 硕士, 研究方向: 配位化学.

① 收稿日期: 2003-03-13; 修订日期: 2003-04-14

0, $\omega^{-1} = [S^2 (F_0^2) + (0.0764P)^2 + 0.0000$ P], $P = (F_0^2 + 2F_c^2)$ /3. 差值 Fourier 图中残余 最高电子密度峰 $\Delta \rho_{\rm max} = 440~{\rm e} \cdot {\rm nm}^{-3}$, 最低电子 密度峰 $\Delta \rho_{\rm min} = -258~{\rm e} \cdot {\rm nm}^{-3}$.

2 结果与讨论

2.1 配合物的合成与组成

测定结果表明: 配合物属单斜晶系,空间群 C2/c; 其晶胞参数为: a=1.9159(4) nm, b=0.82271(17) nm, c=1.6170(4) nm; $\beta=100.477(15)^\circ$, V=2.5063(9) nm³, Z=8, $D_{\rm cald}=1.491$ g·cm⁻³, $\mu=1.051$ mm⁻¹, F(000)=1 296, 最终偏差因子(对 $I>2\sigma(I)$ 的衍射点) $R_1=0.0433$, $\omega R_2=0.1120$, $\omega^{-1}=[S^2(F_0^2)+(0.0764P)^2+0.0000P]$, $P=(F_0^2+2Fc^2)/3$. 差值 Fourier 图中残余最高电子密度峰 $\Delta \rho_{\rm max}=440$ e·nm⁻³, 最低电子密度峰 $\Delta \rho_{\rm min}=-258$ e·nm⁻³.

该实验的目标是按文献 [3] 方法,先用刚性配体占据过渡金属赤道位置,在此基础上,过渡金属再和牛磺酸中磺酸基的氧配位,得到牛磺酸的配合物,但实验结果表明,牛磺酸并没有参与配位.配合物中,镍的轴向的一个位置被水分子占据,虽有一个轴向位置没有被占据,但牛磺酸也没有配位,估计是由于体系中有水存在,文献^[3-4]表明磺酸基的配位能力比水差.

配合物 IR 谱图中,在 1 200 cm⁻¹和 1 150 cm⁻¹处均没有吸收峰,表明磺酸基没有参与配位,配合物在 3 580 cm⁻¹, 1 596 cm⁻¹和 603.8 cm⁻¹有吸收峰,由于所用的试样经过充分干燥,因此可以确认配合物中含有稳定的配位水,配合物在1597 cm⁻¹和 1 517 cm⁻¹左右均有吸收峰,表明配合物中,Phen 均参与配位.在 1 087 cm⁻¹和 627 cm⁻¹也均有吸收峰,表明配合物中含有高氯酸根.

2.2 晶体结构描述及讨论

主要键长和键角见表 1,配合物的非氢原子坐标及热参数见表 2.

从 分 子 结 构 (图 1) 知 , 在 配 合 物 $[Ni(Phen)_2(H_2O)] \cdot ClO_4$ 中,每个镍离子与 2 个 Phen 分子配位(Ni-N(1),Ni-N(1)#,0.1983(3) nm,Ni-N(2),Ni-N(2)#,0.2040(3) nm),另有 1 个水分子提供 1 个氧原子(Ni-O(1),0.2227(4) nm)参与配位,形成畸变的四方锥配位环境,其中 O(1)处于四方锥的锥顶,而 4 个氮原子(N(1),N(1)#,N(2),N(2)#) 在锥底, Ni^2 + 与水分子氧的键比它与 Phen 的 N 原子的键要长. 配阳离子 Ni

 $(Phen)_2^2$ 与 ClO_4 通过静电作用形成配合物,同时,配位水与 ClO_4 之间存在氢键(O(1)—H(10) …O(2),键长 0. 284 8(8) nm,键角 $162(5)^\circ$),分子片之间通过 π — π 堆积作用而形成二维网结构(图 2).

表 1 主要键长和键角

Table 1 Selected bond distance and bond angle

1431	e i bereeted	bona anotanico una bona ungre
键	键长 /10 ⁻¹ nm	键 角 角度 /°
Ni-N(1)	1.983(3)	N(1)—Ni—N(2)#1 99.75(11)
Ni-N(1)#1	1.983(3)	N(1)#1—Ni—O(1) 87.32(8)
Ni-N(2)	2.040(3)	N(1)—Ni—N(1)#1 174.63(16)
Ni-N(2)#1	2.040(3)	N(1)—Ni—N(2) 82.32(11)
Ni-O(1)	2.227(4)	N(1)#1—Ni—N(2) 99.75(11)
Cl—O(2)	1.410(3)	N(1)#1—Ni—N(2)#1 82.32(11)
Cl—O(3)	1.414(3)	N(2)—Ni—N(2)#1 135.07(17)
Cl—O(5)	1.415(4)	N(1)#1—Ni—O(1) 87.32(8)
Cl—O(4)	1.419(3)	N(2)—Ni—O(1) 112.47(8)
Cl'-O(5')	1.413(3)	N(2)#1—Ni—O(1) 112.47(8)
Cl'—O(4')	1.416(3)	
Cl'—O(3')	1.416(4)	
Cl'-O(2')	1.413(4)	

#1 的对称操作为: -x+1,y,-z+3/2

表 2 配合物的非氢原子坐标(×10⁴) 和热参数(×10nm²)
Table 2 Nonhydrogen fractional atomic coordinate(×10⁴) and

equivalent	isotropic displac	cement parameters	$(\times 10 \text{nm}^2)$ for	r complex		
原子	x	у	z	Ueq		
Ni	5 000	5 585(1)	7 500	49(1)		
N(1)	4 052(1)	5 472(3)	6 766(2)	52(1)		
N(2)	5 278(1)	6 533(4)	6 440(2)	55(1)		
0(1)	5 000	2 878(5)	7 500	76(1)		
C(1)	3 448(2)	4 892(5)	6 946(2)	61(1)		
C(2)	2 827(2)	4 840(5)	6 367(3)	68(1)		
C(3)	2818(2)	5 389(5)	5 574(3)	70(1)		
C(4)	3 439(2)	6 017(4)	5 358(2)	60(1)		
C(5)	3 496(2)	6 694(6)	4 558(3)	83(1)		
C(6)	4 122(3)	7 307(5)	4 405(3)	83(1)		
C(7)	4 746(2)	7 284(5)	5 018(2)	61(1)		
C(8)	5 399(2)	7 860(5)	4 891(3)	78(1)		
C(9)	5 971(2)	7 767(6)	5 529(3)	81(1)		
C(10)	5 894(2)	7 116(5)	6 296(2)	69(1)		
C(11)	4 707(2)	6 627(4)	5 802(2)	52(1)		
C(12)	4 053(2)	6 029(4)	5 981(2)	49(1)		
Cl	6 710(2)	214(6)	8 194(3)	55(1)		
O(2)	6 263(4)	1 033(13)	7 537(4)	119(4)		
O(3)	6 375(5)	79(11)	8 902(5)	129(4)		
O(4)	6 856(5)	-1 369(8)	7 920(7)	97(4)		
O(5)	7 356(3)	1 075(8)	8 416(6)	129(4)		
Cl´	6 514(3)	205(8)	8 128(4)	82(2)		
0(2)	6 537(7)	1 228(13)	7 432(5)	201(8)		
0(3)	5 807(4)	-307(13)	8 121(10)	219(7)		
0(4)	6 947(5)	-1 175(11)	8 082(8)	114(5)		
0(5)	6 770(7)	1 054(10)	8 882(4)	146(6)		
注: 定义为正交化张量 <i>U</i> .: 的 1/3.						

注:定义为正交化张量 U_{ii} 的 1/3

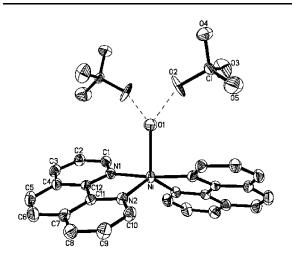


图 1 配合物的晶体结构

Fig. 1 Crystal structure of the compound

3 结 论

上述配合物中,虽然只有2个Phen参与了配位,同时,在轴向位置也只有1个水分子参与配位,在轴向位仍有1个未配位空间位置,但牛磺酸的磺酸基也没有参与配位,这和文献[3]报道的磺酸基氧的配位能力比水差是一致的.

参考文献

[1] JIAN Fang-fang, LIN Jie-hua, ZHANG Shu-sheng. Structure of bischloro tris (1, 10 - Phenanthroline) copper (II) dichloromethane solvate nonahydrate: Cu (phen)₃ Cl₂ · CH₂ Cl₂ · 9H₂O[J]. CHINESE J. Chem, 2001, 19(8):772 -777.

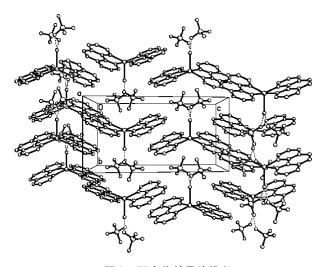


图 2 配合物的晶胞堆积

Fig. 2 Packing drawing of the compound

- [2] 张祥麟,康 衡. 配位化学 [M]. 长沙: 中南工业大学 出版社, 1998. 270 275.
- [3] Ji-Wei Cai, Cai-Hong Chen, Cheng-Zhu Liao. Variation in the coordination mode of arenedisulfonates to copper (II): synthesis and structureal characterization of six copper (II) arenedisulfonate complexes [J]. J. Chem. Soc. Dalton Trans., 2001; 1137 –1142.
- [4] Andrew J Shubnell, Eric J Kosnic, Philip J Squattrito. Structures of layered metal sulfonate salts: trends in coordination behavior of alkali, alkaline earth and transition metals [J]. Inorg. Chim. Acta, 1994, 216: 101-112.
- [5] 张淑华, 蒋毅民. Cu (Ⅱ) 牛磺酸缩水杨醛席夫碱配合物的合成及晶体结构 [J]. 无机化学学报, 2002, 18 (5): 497-500.

Synthesis and crystal structure of the compound $\lceil Ni(Phen)_2(H_2O) \rceil \cdot 2ClO_4$

ZHANG Shu-hua¹; MA Lu-fang²

(1. Department of Materials and Chemisty Engineering, Guilin Institute of Technology, Guilin 541004, China; 2. Department of Chemistry, Luoyang Normal College, Luoyang 471022, China)

Abstract: In the reaction of transition metal perchlorate with o-phenanthroline one compound of $[\text{Ni}(\text{Phen})_2(\text{H}_2\text{O})] \cdot 2\text{ClO}_4(\text{Phen} = o\text{-phenanthroline})$ is produced which can be tested by elemental analysis, IR spectra and X-ray diffraction. The compound crystallizes in the monocline, space group C2/c with the following unite cell parameters: $a = 1.915\ 9(4)\ \text{nm}$, $b = 0.822\ 71(7)\ \text{nm}$, $c = 1.617\ 0(3)\ \text{nm}$; $\beta = 1.00.477(15)^\circ$, $V = 2.506\ 3(9)\ \text{nm}^3$, Z = 8, $D_{\text{cald}} = 1.491\ \text{g} \cdot \text{cm}^{-3}$. An infinite 2-D network structure of the complex is formed by π — π packing among molecules.

Key words: nickel compound; o-phenantholine; crystal structure